Aller au contenu principal

Low prevalence of lipodystrophy in HIV- infected Senegalese children on long-term antiretroviral treatment

Low prevalence of lipodystrophy in HIV- infected Senegalese children on long-term antiretroviral treatment: the ANRS 12279 MAGGSEN Pediatric Cohort Study

Cecile Cames , Lea Pascal , Aissatou Ba , Hélène Mbodj , Baly Ouattara , Ndeye-Fatou Diallo , Philippe Msellati ,Ngagne Mbaye , Haby Sy Signate , Stephane Blanche , Aminata Diack and for the MAGGSEN Cohort Study.


Background: The long-term benefits of antiretroviral treatment (ART) are associated with metabolic complications, especially lipodystrophy, which has been well described among HIV-infected adults and children on ART in developed settings. Specifically, stavudine, and to a lesser extent zidovudine and protease inhibitors (PI), have been consistently implicated in the development of lipodystrophy. In 2006, following advice from the WHO, Senegal began phasing out stavudine from first-line ART. The objectives of this cross-sectional analysis are to assess and identify risk factors affecting the prevalence of lipodystrophy in Senegalese children and adolescents on long-term ART participating in a cohort study.

Methods: Lipodystrophy was clinically assessed in two- to 18-year-old children on ART for at least six months and with no concurrent severe acute malnutrition. Risk factors for lipodystrophy were identified using stepwise multivariable logistic regression. Explanatory variables included clinical and personal data, immunovirologic status, and therapeutic history.

Results: Overall, 254 children were assessed for lipodystrophy. The median age was 10.9 years (IQR: 8.1–14.2) and the median duration on ART was 54 months (32–84). Only 18% had been previously treated with stavudine, with a median treatment duration of 8 months (5–25). Ongoing treatment included 76% of children receiving zidovudine (median duration of 48 months (26–74)) and 27% receiving PI (lopinavir/ritonavir; median duration of 49 months (23–59)). Mild signs of lipodystrophy were observed in 33 children (13%): 28 with lipoatrophy, 4 with lipohypertrophy and one with combined type. Boys were more likely to present with lipoatrophy than girls (aOR: 4.3, 95% CI: 1.6–11.7). Children previously treated with stavudine for ≥1 year had a greater risk for lipoatrophy than those never exposed (3.8, 1.0–14.0), although the association was weak. There was no association between lipodystrophy and age or current or cumulative treatment with lopinavir/ritonavir or zidovudine.

Conclusions: We report low prevalence of mild lipodystrophy in children and adolescents on long-term ART receiving a stavudine-sparing regimen. These findings are reassuring for clinicians in low-income settings where zidovudine is massively prescribed and lopinavir/ritonavir is the only widely available PI.

Trial registration: identifier: NCT01771562 (registration date: 01/18/2013).
Keywords: Lipodystrophy, Lipoatrophy, Children, Adolescents, HIV-infection, ART, Stavudine, Zidovudine, Protease inhibitor

* Correspondence:
1Institut de Recherche pour le Développement (IRD), UMI233 IRD, INSERM U1175, Université de Montpellier, 911, avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated.

Cames et al. BMC Infectious Diseases (2018) 18:374


The long-term benefits of antiretroviral treatment (ART) are associated with metabolic complications, especially lipodystrophy, which has been well described among HIV-infected adults and children on ART. Lipodystrophy diagnosis involves changes in regional fat distribution, including peripheral fat loss (lipoatrophy), central fat accumulation (lipohypertrophy), or a combination of both. Because lipodystrophy, and in particular the potentially disfiguring effects of lipoatrophy, may negatively affect treatment adherence and effectiveness [1], such effects are of major concern in children and adolescents who may re- quire life-long ART.

In studies published over the past decade, the prevalence of lipodystrophy in children receiving ART has ranged widely, from 10 to 84% [2–9], depending on the detection method. Stavudine, and to a lesser extent zidovudine, both of which are thymidine-analogue nucleoside reverse transcriptase inhibitors (NRTI), have consistently been associated with lipoatrophy, affecting between 8 to 28% of children, after 2–5 years of treatment [2, 3, 7, 10]. Protease inhibitors (PI) have been previously implicated in the development of both fat loss and accumulation [11, 12], thus complicating the study of risk factors, as these drugs may be administered together. Lastly, lipo- dystrophy development is likely multifactorial, includ- ing other risk factors, such as puberty [5, 6, 13], ethnicity [2, 3], HIV disease progression [3, 8] and host factors [14].

Compared to high to middle-income settings, much less is known about lipodystrophy in African children and especially adolescents. Two recent cross-sectional studies in Uganda and Tanzania reported mild lipoatrophy in 27% [13] and 30% [15] of children aged one to 18 years, after substantial stavudine exposure. Conversely, moderate to severe lipoatrophy was reported in 36% of prepubescent South African children following a median treatment dur- ation of 41 months with stavudine [16]. Data on fat distri- bution abnormalities among HIV-infected children and adolescents in other regions of Africa are unavailable.

A 2006 World Health Organization (WHO) report highlighted stavudine-associated toxicities and advised that stavudine be substituted with abacavir in patients with lipoatrophy [17]. In response, from 2007 to 2008 the Senegalese National Program phased out stavudine from first-line pediatric treatment. Due to the prohibi- tive cost of abacavir, most children were switched to zidovudine. Thereafter, stavudine was used sparingly until 2012, due to lack of alternative options in some patients or as a substitution drug for six months in children with severe anemia. In 2015, it was estimated that 4800 (4000–5600) children aged 0 to 14 years were living with HIV in Senegal, of whom 26% (19–31%) were receiving ART [18].

The ANRS 12279 Maggsen Pediatric Cohort Study aims to investigate growth and metabolic disorders among HIV-infected Senegalese children and adoles- cents on long-term ART and under active follow-up at the country’s two earliest and most important pediatric HIV clinics, Albert Royer and Roi Baudouin Hospitals, which account for 30% of all children on ART at the country level. Our present objectives are to characterize and assess the prevalence of lipodystrophy and to iden- tify risk factors in cross-sectional analyses conducted at mid-term of the cohort study.


Study population

Full details of the rationale for the Maggsen Pediatric Cohort Study and methods are provided elsewhere [19]. Briefly, the study includes HIV-1-infected children aged two to < 16 years under active follow-up in two Senegalese HIV clinics from April 2013. Children were seen every three months for a complete clinical assessment, and every six months for laboratory monitoring/fasting blood ana- lyses. The present cross-sectional analysis includes study patients under active follow-up from May to December 2015, who had at least six months on ART. As it might be difficult to distinguish between lipoatrophy and wasting syndrome, children experiencing severe acute malnutrition were excluded from the analysis. Severe acute malnutrition is defined for both weight-for-height z scores (WHZ) in children < 5 years or body mass index-for-age z score (BMIZ) in children ≥5 years as being <− 3 [20, 21].


In May 2015, four pediatricians at the clinics (three from Albert Royer Hospital and one from Roi Baudouin Hospital) received practical and collective training for lipodystrophy diagnosis followed by clinical assessment of 102 children in the cohort. These sessions were conducted and supervised by a senior researcher and pediatrician (SB) experienced in pediatric lipodystrophy, who was both blind to children’s ART regimen and independent from the cohort study. Diagnosis of the remaining children was then assigned to the permanent pediatrician at each site and performed when the children came to their scheduled visit. Lipoatrophy was defined as fat loss in one or more of the following sites: face, arm, leg, or buttocks. Lipohyper- trophy was defined as fat gain in one or more of the following sites: abdomen, neck, or breast. Children with at least one sign of lipoatrophy and one sign of lipohy- pertrophy were defined as combined type [7]. Body fat redistribution was rated as none – no fat changes; mild – possible minor changes, noticeable only on close inspec- tion; moderate – moderate changes, readily noticeable to an experienced clinician or a close relative who knows the child well; severe – major changes, readily noticeable to a

Cames et al. BMC Infectious Diseases (2018) 18:374

Page 3 of 9

casual observer [22]. Clinical assessment used a scoring sheet included in the child’s medical file. At Albert Royer Hospital, in case of doubt between a grade mild and a grade moderate, or a grade moderate and grade severe, the procedure was to require an additional diagnosis from another trained pediatrician and if discordant, to grade at the lower score. At Roi Baudouin Hospital, however, there was only one pediatrician in charge of HIV care and grades were assigned at their discretion.

Variables and definitions

Data recorded from medical files included WHZ or BMIZ scores, puberty onset (defined as a child reaching stage 2 of the Tanner classification [23]), WHO stage at ART initiation and therapeutic history, CD4 cell counts and viral load (undetectable defined as HIV RNA < 40 copies per milliliter), total cholesterol, LDL cholesterol and triglycerides. Dyslipidemia was defined as total choles- terol and/or isolated HDL and/or triglycerides abnormal- ities. Clinical and laboratory variables were those collected just prior to the lipodystrophy assessment visit (<3 and < 6 months, respectively).

Data analysis

The primary outcomes investigated were fat redistribution (any form) and lipoatrophy. Children characteristics includ- ing, age, sex, puberty onset, nutritional status, WHO stage at ART initiation, stavudine, zidovudine and PI treatments and durations, CD4 count, virologic suppression and lipid profiles were compared with the primary outcomes. For each ART drug, recent drug treatment (defined as current treatment or treatment ending within the previous six months), any treatment (defined as drug ever used) and exposure duration were included as separate variables. Associations from univariable analyses were assessed using the Kruskal-Wallis and Wilcoxon rank-sum tests, Chi-square and Fisher’s exact, and univariable logistic regression, as appropriate. Risk factors for the primary outcomes were identified using a stepwise multivariable logistic regression. Explanatory variables with P < 0.25 in univariable analysis were included in the multivari- able models and exited by the stepwise procedure at P ≥ 0.20. Continuous explanatory variables were catego- rized before entering the models.

Continuous variables are expressed as median with interquartile range (IQR). Odds ratios (OR) and adjusted OR (aOR) are given with their 95% confidence interval (CI) in univariable and multivariable analyses, respect- ively. Differences were considered statistically signifi- cant at P < 0.05. All statistical analyses were performed in SAS version 9.3 (SAS Institute, Cary, North Carolina, USA).


Ethics clearance for the cohort study was given by the Ethics and Regulatory Committees in Senegal and the Ethics Committee of the Institute of Research for Develop- ment in France. All parents or legal guardians provided written informed consent on behalf of their children. The cohort was registered with NCT01771562 on 01/18/2013.


Size and characteristics of the study population

Between May and December 2015, among 335 children included in the cohort, 323 were still in care in the study facilities. Of these, 42 children were on ART for less than six months and 27 presented with severe acute malnutrition. Therefore, the study population for this analysis comprised 254 patients (Table 1). The median age was 10.9 years (8.1–14.2). Overall, 74% of children were on first-line ART, 26% on second-line ART and one child was on third-line ART. There were no differences between boys and girls with regard to therapeutic and immunovirologic data, however, boys were more likely than girls to present moderate wasting (33% vs 14%, P = 0.0007) and prepubescent status (72% vs 50%, P = 0.0004).

Prevalence and characterization of fat redistribution

Overall, 33 cases (13%) of lipodystrophy were clinically reported, all in children older than five years of age. Signs of fat loss were observed in 28 children (11%), signs of fat accumulation in four children (2%), and only one child presented with combined type (Table 2). All signs of fat redistribution were graded “mild” (grade 1). While there is often inherent uncertainty in grading mild lipodystrophy, there were no examples of doubt in a clinical diagnosis between mild versus moderate (grade 2) or severe (grade 3) signs of lipodystrophy reported in the study.

In 28 children with signs of lipoatrophy, 22 presented with only prominent veins in the arms while the remaining six presented with additional signs of fat loss (six with sunken cheeks, two with prominent veins in the legs and two with sunken buttocks). Abdominal fat accumulation was present in the four children with lipo- hypertrophy. Fat redistribution was not associated with age categories (< 10 and ≥ 10 years) or any lipid abnormality.

Fat redistribution by treatment with ART drugs

Signs of lipodystrophy were weakly associated with prior treatment with stavudine and longer PI treatment dur- ation (Table 3). Few children (18%) had been previously treated with stavudine and for a limited median treat- ment duration of 8 months (5–25). Stavudine treatment in these children could only have occurred at any time

Cames et al. BMC Infectious Diseases (2018) 18:374

Table 1 Characteristics of HIV-infected children on ART in the Maggsen Cohort Study.

Dakar, Senegal

aAbbreviations: ART antiretroviral treatment, BMIZ body mass index for age z-score, HAZ height for age z-score, II integrase inhibitor, nRTI nucleotide reverse- transcriptase inhibitor, NRTI nucleoside reverse-transcriptase inhibitor, NNRTI non-nucleoside reverse-transcriptase inhibitor, IQR interquartile range, PI/r protease inhibitor boosted, RTV ritonavir, WHZ weight for height z-score
bData are N (%) unless otherwise indicated

cWHO symptoms classification: highest stage reached by the child before ART initiation
dModerate wasting (moderate acute malnutrition) is defined for both weight-for-height z scores (WHZ) in children < 5 years or body mass index-for-age z score (BMIZ) in children ≥5 years as being ≥ − 3 and < −2 [20, 21]

between September 2003 and November 2012, so that at enrollment in the cohort study, no child was still receiv- ing stavudine. Almost all children had been treated with zidovudine, and 76% were currently receiving this ART drug in their backbone regimen, for a median treatment

duration of 48 months (26–74). The median duration of current treatment with PI, essentially lopinavir/ritonavir (lopinavir/r), was 49 months (23–59). Treatment with other PI was marginal: six children had previously re- ceived a nelfinavir-based ART for a median duration of

Table 2 Metabolic abnormalities in HIV-infected children on ART in the Maggsen Cohort Study.

Characteristics Boys
(N=143) (N=111)


Dakar, Senegal

33 (13) 28 (11) 4 (2) 1 (0) 63 (25) 59 (23) 43 (17) 7 (3)

a–b 10–18 y


106 (69) 47 (31) 68 (44)

29 (19)
124 (81)
49 (32)
−1.6 (−2.2 – − 0.9) −1.2 (− 1.9 – − 0.5) 92 (60)

38 (25)
108 (71)
64 (34–100)

72 (47) 28 (18) 30 (20) 22 (14) 1 (1)


Study site
Albert Royer Hospital Roi Baudouin Hospital

WHO classificationc

Stage 1–2

Stage 3–4
Moderate wastingd
WHZ/BMIZ, median (IQR)
HAZ, median (IQR)
Puberty onset
CD4 < 500 cells/mm3
Viral load < 40 copies/mL
Time on ART in month, median (IQR) ARV drug classes


2–5 y (N=18)

13 (72) 5 (28) 6 (33)

8 (44)
10 (56)
0 –
−0.7 (−1.6–0.2)
− 1.3 (−2.0 – − 1.0) 0 –

2 (11)
7 (39)
22 (11–30)

15 (83) 3 (17) 0 –
0 –

0 –

5–10 y (N=83)

61 (73) 22 (27) 37 (45)

14 (17)
69 (83)
14 (17)
−1.1 (−1.8 – −0.4) −1.1 (−1.7–−0.3) 0 –

7 (9)
57 (70)
47 (31–61)

65 (78) 15 (18) 1 (1) 2 (3) 0 –

Total P value (N=254)


0.65 0.03

51 (20)
203 (80)
63 (25)
−1.4 (−2.0 – − 0.7)
−1.2 (− 1.8 – − 0.5)
92 (36) < 0.0001 47 (19) 0.01 172 (68) 0.02 54 (32–84) < 0.0001

152 (60) 46 (18) 31 (12) 24 (10) 1 (0)

180 (71) 74 (29) 111 (44)

0.002 < 0.0001 0.37

Combined type
Abnormal total cholesterol (> 200 mg/dL) Abnormal LDL cholesterol (> 130 mg/dL) Abnormal triglycerides (> 150 mg/dL)

25 (17) 24 (17) 1 (1) 0 – 30 (21) 28 (20) 18 (13) 3 (2)


8 (7) 4 (4) 3 (3) 1 (1) 33 (30) 31 (28) 25 (23) 4 (4)

P value 0.02 0.11 0.11 0.04 0.47

aAbbreviations: ART antiretroviral treatment, LDL low-density lipoprotein bData are N (%)
cAll cases were graded “mild”

Cames et al. BMC Infectious Diseases (2018) 18:374

Page 5 of 9

Table 3 Univariable regression analysis of potential risk factors for fat abnormalities in the Maggsen cohort study , Dakar, Senegal

Characteristics Boys

Age ≥ 10 years
Puberty onset: Yes
Moderate wastingb: Yes
WHO classification Stagec 3/4 vs 1/2 Viral load > 40 copies/mL: Yes
CD4 < 500 cells/mm3: Yes
Stavudine ever used: Yes
Stavudine exposure 1 year vs No
≥1 year vs No
Zidovudine recent: Yes
Zidovudine exposure < 3 years vs No ≥3 years vs No
Lopinavir/r recent: Yes
Lopinavir/r exposure < 3 years vs No ≥3 years vs No

OR 95% CI 4.3 1.6–11.6 1.3 0.6–2.9 1.2 0.5–2.7 1.7 0.7–3.9 1.7 0.5–5.0 1.1 0.5–2.6 0.5 0.1–1.7 2.1 0.9–5.2 1.5 0.5–4.8 3.6 1.0–12.6 1.0 0.4–2.4 0.5 0.2–1.8 1.3 0.5–3.3 1.3 0.6–3.1 0.3 0.0–2.5 2.2 0.9–5.4

Fat abnormality P value OR

0.004 2.7 0.54 1.4 0.64 1.3 0.20 1.4 0.37 2.0 0.76 0.9 0.26 0.6 0.09 2.1 0.48 1.7 0.04 3.1 0.94 1.0 0.30 0.6 0.61 1.2 0.51 1.1 0.28 0.3 0.09 1.8

95% CI 1.2–6.3 0.6–3.0 0.6–2.7 0.6–3.1 0.7–5.8 0.4–2.0 0.2–1.8 0.9–5.0 0.6–4.9 0.9–10.8 0.4–2.3 0.2–1.7 0.5–3.0 0.5–2.5 0.0–2.0 0.7–4.3

P value 0.02 0.42 0.52 0.43 0.23 0.82 0.34 0.08 0.32 0.07 0.93 0.30 0.63 0.86 0.20 0.21

aAbbreviations: CI confidence interval, Lopinavir/r lopinavir/ritonavir, OR odds ratio
bModerate wasting (moderate acute malnutrition) is defined for both weight-for-height z scores (WHZ) in children < 5 years or body mass index-for-age z score (BMIZ) in children ≥5 years as being ≥ − 3 and < − 2 [20, 21]
cWHO symptoms classification: highest stage reached by the child before ART initiation

61 months (53–87) and eight were currently treated with an atazanavir/ritonavir-based regimen.

Factors associated with lipoatrophy

To identify risk factors for lipoatrophy, we ran a stepwise logistic regression model with ‘lipoatrophy + combined type’ as the dependent variable. Univariable analyses iden- tified sex, moderate wasting, exposure to stavudine (no vs. < 1 year vs. ≥ 1 year), and recent exposure to lopina- vir/r (no vs. < 3 years vs. ≥ 3 years) for inclusion in the model (Table 4). Forcing age (< 10 years and ≥ 10 years) and moderate wasting (yes/no) to remain in the model did not change the results. Boys were more likely to present with lipoatrophy (aOR: 4.3, 95% CI: 1.6–11.7) than girls. Children exposed to stavudine for ≥1 year had a greater risk for lipoatrophy than those never ex- posed (aOR: 3.8, 95% CI: 1.0–14.0), although the associ- ation was weak. Results were similar from a model including all cases of lipodystrophy (n = 33).


The prevalence of clinical lipodystrophy was very low, 13%, in a cohort of HIV-infected Senegalese children and adolescents on ART for a median duration of 54 months. First, we observed only mild signs of lipodystrophy, by def- inition corresponding strictly to possible minor changes. Second, prior treatment with stavudine was limited in this Senegalese cohort, regarding both the proportion

of children concerned, 18%, and the duration on treat- ment, eight months on average. However, children pre- viously treated with stavudine for more than one year were at greater risk to present with possible sign(s) of lipoatrophy than those never exposed. Most studies are based on clinical examination for fat redistribution, which might be subjective. Some have coupled clinical assessment with various objective techniques including skin-fold thickness, dual energy X-ray absorptiometry (DEXA) and magnetic resonance imaging. These methods are prohibitively expensive and/or complex, if not unavail- able, for routine use in low-income settings. Clinical as- sessment of fat redistribution in HIV-infected children is further complicated by the normal, dynamic alterations in body shape and composition occurring during childhood and adolescence. Hence some studies have considered only grades moderate to severe, because of uncertainty in providing a definitive diagnosis of mild grade lipodystro- phy. Acknowledging the inherent uncertainty in the diag- nosis of the mild grade, we found no instance of doubt in clinical diagnosis between mild versus moderate or severe signs of lipodystrophy.

There is overwhelming evidence that lipoatrophy is an adverse drug reaction to stavudine, with potential mech- anisms including mitochondrial damage in adipocytes and inhibition of adipogenesis [24, 25]. Recent southern African studies reporting on the association between lipodystrophy and stavudine treatment in children are

Cames et al. BMC Infectious Diseases (2018) 18:374

Page 6 of 9

Table 4 Risk factors for lipoatrophy in HIV-infected children in the Maggsen cohort study.

Multivariable analysisd


Boys vs. girls Stavudine exposure

≥ 1 year vs. no

< 1 year vs. no Lopinavir/r exposure ≥ 3 years vs. no

< 3 years vs. no
Moderate wastinge: yes Age ≥ 10 vs. < 10 years

Univariable analysisc
OR 95% CI 4.3 1.6–11.6

3.6 1.0–12.6 1.5 0.5–4.8

2.2 0.9–5.4 0.3 0.0–2.5 1.7 0.7–3.9 1.3 0.6–2.9

P value aOR

0.004 4.3

0.04 3.8 0.48 1.4

0.09 – 0.28 – 0.20 – 0.54 –

95% CI

1.6–11.7 1.0–14.0

0.4–4.4 –

P value 0.005

0.04 0.59

–Dakar, Senegal

aAbbreviations: aOR adjusted odds ratio, CI confidence interval, Lopinavir/r lopinavir/ritonavir, OR odds ratio bNo missing for multivariable model
cExplanatory variables are included at P < 0.25 in multivariate analysis
dExplanatory variables are exited at P ≥ 0.20

eModerate wasting (moderate acute malnutrition) is defined for both weight-for-height z scores (WHZ) in children < 5 years or body mass index-for-age z score (BMIZ) in children ≥5 years as being ≥ − 3 and < − 2 [20, 21]

conflicting. Innes et al. found an alarmingly high preva- lence, 36%, of moderate to severe lipoatrophy in prepubes- cent South African children after a median treatment duration of 41 months on stavudine [16]. They also re- ported that current treatment with stavudine was the pre- dominant risk factor for lipoatrophy, as well as finding a cumulative effect, by year of exposure, on arm fat loss. Studies in Uganda and Tanzania reported lipodystrophy in 27% (mostly lipoatrophy, of all grades) and 30% (mostly mild lipoatrophy) of children aged two to 18 years [13, 15]. In the Ugandan study, involving children with a median of 3.8 years on ART of whom 20% had an ongoing exposition to stavudine, risk factors identified were older age, puberty onset and any exposure to stavudine [13]. Similarly, the Tanzanian study reported older age and longer exposure to stavudine as predictors of lipodystro- phies in children under current exposure to stavudine for approximatively 3 years [15]. In 2012, most African children were still receiving stavudine-based ART. Thus a distinguishing feature between these studies and ours is the context of long-term and ongoing exposure to stavudine.

The effect of stavudine in causing lipoatrophy appears to be strongly dose-related [26]. The CHAPAS-3 trial, where stavudine was notably prescribed at lower doses [27] than in the previously cited studies, reported only 1% of lipodystrophy (lipoatrophies grade 2 and 3) in children previously treated with stavudine for a median of 3 years and randomized to continue with a stavudine-based regi- men over 96 weeks [28].

In recent years, WHO reiterated recommendations for countries to phase out stavudine and today it is no longer considered in first-line options. Nonetheless, estimates suggest stavudine still contributed to between 7 to 9% of the NRTI procurement forecasted for pediatric use in low

and middle-income countries in 2016 [29]. The early pro- motion of stavudine-sparing first-line regimen in Senegal since 2007 certainly contributed to limiting the occur- rence of lipoatrophy in this cohort.

It had been suggested that zidovudine, which like stav- udine, is a thimidine-analogue NRTI, could also lead to lipodystrophy, although to a lesser extent [13, 15, 30]. Zidovudine treatment was predominant in these Sene- galese children’s ART regimen, and our results are con- sistent with those of the ARROW trial which reported, three years after randomization to lamivudine+abacavir +zidovudine, an extremely low rate of mainly mild lipoa- trophy in children aged three to 19 years of less than 2% [31]. In that study, the use of stavudine (as a first-line substitution) and protease inhibitor (as second line) was minimal. In addition, substitution of stavudine with zidovudine significantly decreased severity or promoted resolution of mild to moderate lipoatrophy in HIV-infected Thaï children after 96 weeks [32] or more [33]. In the present study, thirty months had passed since the date of last individual exposure to stavudine and inclusion in the assessment. We suspect that a process of reversal of lipody- strophy figures occurred in this cohort. Together, these results provide reassurance on the substantially lower potential of zidovudine for lipoatrophy, in settings where stavudine has been massively replaced by zidovudine in first-line treatment.

The first generation of PI has also been associated with fat redistribution, both loss [12, 34, 35] and accumula- tion [11, 36, 37] in adults, and with similarly conflicting results in children [5, 7, 9, 38–40]. However, the role played by ART, and especially by the PI, in the pathogen- esis of lipohypertrophy is less clear. The most accepted hypothesis is that PI impair adipocyte differentiation resulting in hypertrophy of adipose tissue, particularly in

Cames et al. BMC Infectious Diseases (2018) 18:374

Page 7 of 9

visceral tissue [2, 9, 12]. Although past and current expos- ure to lopinavir/r was substantial in this cohort, we did not find an association with lipodystrophy in multivariable analysis.

Ultimately, male sex was the main risk factor for lipoa- trophy in the cohort. Boys were more likely to present with moderate wasting and a prepubescent status than girls at the time of the evaluation. Having excluded children with severe wasting from our study popula- tion, moderate wasting remained at rather high level, particularly among adolescents, and is consistent with figures reported from a recent study conducted in simi- lar context in Mali [41]. Explanations for persistent wasting in the Senegalese adolescents on ART may lie in a therapeutic history of drug resistance development and late switch to second-line ART [19], a potentially high level of household food insecurity [42] and a sub- stantial level of undernutrition in the general school population of the Dakar suburbs [43]. However, wasting was not associated with lipoatrophy in either univari- able or multivariable analyses.

Some studies in high to middle-income countries re- ported that females were more likely to develop lipo- dystrophy than males [3, 7, 44]. In those settings, lipohypertrophy and combined type were more com- mon than lipoatrophy. In recent studies reporting a high prevalence of lipoatrophy, sex was not identified as an independent risk factor [3, 15, 16]. Boys accumulate less subcutaneous fat mass than girls during childhood [45] and adolescence [46]. In addition, boys might have looked generally thinner than girls in this cohort. Com- bined, such considerations could have influenced the clin- ical assessment towards an overestimation of lipoatrophy in boys and/or under diagnosis in girls.

Lipodystrophies are frequently associated with metabolic disturbances, presented as a lipodystrophic syndrome [47]. It is recognized that PI may induce dyslipidemia, which may increase the risk of cardiovascular disease in adulthood [7, 38]. The rate of hypercholesterolemia was high, mainly led by elevated LDL-cholesterol, while hypertriglyceridemia was marginal in the cohort. As have others [13, 48], we found no association between lipodystrophy and dyslipid- emia. Longitudinal analyses of blood lipid profile evolution are currently ongoing in the cohort (data not shown).

This study has several limitations. First, our cross- sectional study design does not allow for controlling the trend in evolution of reported lipodystrophy cases. However, the temporality of data, as well as the children’s profiles, suggest that the risk for an increase in prevalence or a development towards more severe forms of lipoatro- phy are unlikely. Second, due to the small number of fat redistribution cases, a limited number of explanatory vari- ables could be included in the multivariable model and statistical power might be limited. Third, the number of

patients not included in this ANRS study cohort due to death or being lost to follow-up before enrollment is un- known, and the results might primarily apply to patients who remained in care.


We report low prevalence of mild lipodystrophy in children and adolescents on long-term ART with limited exposure to stavudine. The responsiveness of the national Senegalese HIV programme to the 2007 WHO recom- mendations to phase out stavudine due to concerns over treatment toxicity, presumably helped to prevent the occurrence and/or the progression of lipodystrophy in these HIV-infected children and adolescents. Moreover, we found that consistent exposure to lopinavir/r and zidovudine did not lead to such adverse drug reaction in our cohort. These findings bring a reassuring message to clinicians in low-income settings where zidovudine is still massively prescribed in the NRTI backbone combin- ation of pediatric ART and lopinavir/r is the most widely available PI.


aOR: adjusted odds ratio; ART: Antiretroviral treatment; BMIZ: Body mass index for age z-score; CI: Confidence interval; II: Integrase inhibitor;
IQR: Interquartile range; Lopinavir/r: Lopinavir/ritonavir; NNRTI: Non nucleoside reverse transcriptase inhibitor; NRTI: Nucleoside/nucleotide reverse transcriptase inhibitor; OR: Odds ratio; PI: Protease inhibitor; RTV: Ritonavir; WHO: World health organization; WHZ: Weight for height z-score


We would like to thank all the participating children and their caregivers. The ANRS 12279 MAGGSEN Cohort Study Group.
Study sites:
Centre Hospitalier National d’Enfants Albert Royer, Dakar, Senegal:

Haby, Sy Signate; Aminata, Diack; Helene, Mbodj; Ndeye Fatou, Diallo; Aissata, Ba; Aicha, Dia; Ndeye Ngone, Have; Astou, Dieye; Oumy, Fall; Rosine, Sonko. Synergie pour l’Enfance/Centre Hospitalier Roi Baudouin, Guediawaye, Senegal:

Ngagne, Mbaye; Baly, Ouattara; Abdou, K, Niang; Alhadji, B, Diom; Adama, Ndour; Bigue, Badiane.
Study Coordination:
Institut de Recherche pour le Développement, Montpellier, France: Cecile, Cames; Lea, Pascal; Philippe, Msellati; Caroline, Desclaux Sall; Suzanne, Izard. Centre de Recherche et de Formation à la Prise en Charge Clinique, Dakar, Senegal: Amady, Ndiaye; Ousseynou, Ndiaye; Binta, Seck.


Financial support was provided by the Agence Nationale de Recherche sur le SIDA et les hépatites virales (ANRS). The ANRS had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials

The datasets used and/or analyzed during the current study available from the corresponding author on reasonable request.

Authors’ contributions
CC, SB, LP and AD conceived the study; SB, HM, NFD, AB and BO collected the data; LP and CC conducted the analyses; All authors advised for results interpretation; CC wrote the first draft of the manuscript; All authors contributed to and did a critical review of the manuscript; All authors approved the final manuscript and concur with the submission.

Cames et al. BMC Infectious Diseases (2018) 18:374

Page 8 of 9

Ethics approval and consent to participate

Ethics clearance for the cohort study was given by the Ethics and Regulatory Committees in Senegal (Ministry of Health) and the Ethics Committee of the Institute of Research for Development in France. All parents or legal guardians provided written informed consent on behalf of their children.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

1Institut de Recherche pour le Développement (IRD), UMI233 IRD, INSERM

16. Innes S, et al. High prevalence of lipoatrophy in pre-pubertal South African children on antiretroviral therapy: a cross-sectional study. BMC Pediatr. 2012;12:183.

17. WHO, Antiretroviral therapy for HIV infection in adults and adolescents. Recommendations for a public health approach. Geneva: World Health Organization; 2006.

18. UNAIDS. Country factsheets Senegal. 2016 [cited 2018 05/05/2018]; Available from:

19. Cames C, et al. Risk Factors for Growth Retardation in HIV-Infected Senegalese Children on Antiretroviral Treatment: The ANRS 12279 MAGGSEN Pediatric Cohort Study. Pediatr Infect Dis J. 2017;36(4):e87–e92.

20. WHO. Child growth standards: WHO Anthro (version 3.2.2, January 2011) and macros. 2006 [cited 2012 07/30/2012]; Available from: http://www.who. int/childgrowth/software/en/.

21. WHO. Growth reference 5–19 years: WHO Anthro Plus software and macros. 2007 [cited 2012 07/30/2012]; Available from: growthref/tools/en/.

22. Carr A, et al. An objective case definition of lipodystrophy in HIV-infected adults: a case-control study. Lancet. 2003;361(9359):726–35.

23. Tanner JM. Growth at adolescence. Oxford: Blackwell Scientific; 1962. 325 p. 24. Hammond E, McKinnon E, Nolan D. Human immunodeficiency virus

treatment-induced adipose tissue pathology and lipoatrophy: prevalence and metabolic consequences. Clin Infect Dis. 2010;51(5): 591–9.

25. Mallal SA, et al. Contribution of nucleoside analogue reverse transcriptase inhibitors to subcutaneous fat wasting in patients with HIV infection. AIDS. 2000;14(10):1309–16.

26. Hill A, et al. Systematic review of clinical trials evaluating low doses of stavudine as part of antiretroviral treatment. Expert Opin Pharmacother. 2007;8(5):679–88.

27. WHO, Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection. Recommendations for a public health approach. 2013: Geneva.

28. Mulenga V, et al. Abacavir, zidovudine, or stavudine as paediatric tablets for African HIV-infected children (CHAPAS-3): an open-label, parallel-group, randomised controlled trial. Lancet Infect Dis. 2015;

29. WHO. Antiretroviral medicines in low- and middle-income countries: forecasts of global and regional demand for 2013–2016. Geneva: World Health Organization; 2014.

30. de Waal R, Cohen K, Maartens G. Systematic review of antiretroviral- associated lipodystrophy: lipoatrophy, but not central fat gain, is an antiretroviral adverse drug reaction. PLoS One. 2013;8(5):e63623.

31. Bwakura-Dangarembizi M, et al. Prevalence of lipodystrophy and metabolic abnormalities in HIV-infected African children after 3 years on first-line antiretroviral therapy. Pediatr Infect Dis J. 2015;34(2):e23–31.

32. Aurpibul L, et al. Recovery from lipodystrophy in HIV-infected children after substitution of stavudine with zidovudine in a non-nucleoside reverse transcriptase inhibitor-based antiretroviral therapy. Pediatr Infect Dis J. 2012; 31(4):384–8.

33. Sawawiboon N, et al. Lipodystrophy and reversal of facial lipoatrophy in perinatally HIV-infected children and adolescents after discontinuation of stavudine. Int J STD AIDS. 2012;23(7):497–501.

34. Carr A, et al. Pathogenesis of HIV-1-protease inhibitor-associated peripheral lipodystrophy, hyperlipidaemia, and insulin resistance. Lancet. 1998; 351(9119):1881–3.

35. Domingo P, et al. Subcutaneous adipocyte apoptosis in HIV-1 protease inhibitor-associated lipodystrophy. AIDS. 1999;13(16):2261–7.

36. Brown TT, et al. Longitudinal increases in waist circumference are associated with HIV-serostatus, independent of antiretroviral therapy. AIDS. 2007;21(13): 1731–8.

37. Sax PE, Kumar P. Tolerability and safety of HIV protease inhibitors in adults. J Acquir Immune Defic Syndr. 2004;37(1):1111–24.

38. Arpadi S, et al. Metabolic abnormalities and body composition of HIV- infected children on Lopinavir or Nevirapine-based antiretroviral therapy. Arch Dis Child. 2013;98(4):258–64.

39. Dos Reis LC, et al. Anthropometry and body composition of vertically HIV- infected children and adolescents under therapy with and without protease inhibitors. Public Health Nutr. 2014;18(7):1255–61.

40. Ramalho LC, et al. Abnormalities in body composition and nutritional status in HIV-infected children and adolescents on antiretroviral therapy. Int J STD AIDS. 2011;22(8):453–6.

U1175, Université de Montpellier, 911, avenue Agropolis, BP 64501, 34394 2

Montpelliercedex5,France. CentreHospitalierNationald’EnfantsAlbert 3

Royer, Dakar, Sénégal. Synergie Pour l’Enfance, Centre Hospitalier Roi 4

Baudouin, Guediawaye, Sénégal. Hôpital Necker Enfants Malades, Paris, France.